Tingkat Korelasi Prestasi Akademik Terhadap Siswa SMP Menggunakan Metode Backpropagation

Authors

  • Nasma Yeni SMP Negeri 3 Lengayang
  • Y Yuhandri Universitas Putra Indonesia YPTK Padang

DOI:

https://doi.org/10.37034/jsisfotek.v3i3.52

Keywords:

Neural Network (ANN), Backpropagation, Correlation, Semester Value, Software Matlab

Abstract

Student academic achievement plays a very important role in determining the quality of a school. Student grades sometimes change every semester, there are increases and decreases. There is an assumption that students whose grades are in the previous semester will be in the next semester and vice versa. is expected to make it easier for us as educators to see the extent to which changes in student academic achievement. The data tested is the data of 60 class VII students in 2 semesters. Furthermore, it will be tested using the MatLab Application, then the results of the changes that occur will come out. The results of this study found that they did not know the value of semester 1 with the value of semester 2 TP. 2019/2020 is very good with an architectural pattern of 10-10-1 with a value of 95.3%. So students who excel in semester 1 are likely to excel in the following semester. So that it can help the school in seeing the Correlation Level of Student Academic Achievement at SMPN 3 Lengayang.

References

Syofneri, N., Defit, S., & Sumijan. (2019). Implementasi Metode Backpropagation untuk Memprediksi Tingkat Kelulusan Uji Kopetensi Siswa. Jurnal Informasi dan Teknologi, 1(4) 12–17. DOI: https://doi.org/10.37034/jidt.v1i4.13 .

Lesnussa, Y. A., Latuconsina, S., & Persulessy, E. R. (2016). Aplikasi Jaringan Saraf Tiruan Backpropagation untuk Memprediksi Prestasi Siswa SMA (Studi kasus: Prediksi Prestasi Siswa SMAN 4 Ambon). Jurnal Matematika Integratif, 11(2), 149 – 160. DOI: https://doi.org/10.24198/jmi.v11.n2.9427.149-160 .

Zulmawati, Z. (2019). Pengaruh Strategi Proses Belajar Mengajar Terhadap Peningkatan Prestasi Belajar Siswa (Studi Pada SMP Swasta Riama Medan). SEJ (School Education Journal), 9(2). DOI: https://doi.org/10.24114/sejpgsd.v9i2.13702 .

Wanto, A. (2018). Optimasi Prediksi dengan Algoritma Backpropagation dan Conjugate Gradient Beale-Powell Restarts. Jurnal Nasional Teknologi dan Sistem Informasi, 3(3), 370-380.

Masruroh., & Mauladi, K. F. (2020). Perbandingan Metode Regresi Linear dan Neural Network Backpropagation dalam Prediksi Nilai Ujian Nasional Siswa SMP Menggunakan Software R. Joutica, 5(1). DOI: https://doi.org/10.30736/jti.v5i1.347 .

Sadli, A. (2019). Simulasi Pengenalan Karakter Menggunakan Neural Network Pada Matlab. Jurnal Sistem Informasi dan Teknologi Informasi, 7(1).

Saputra, W., Tulus., Zarlis, M., Sembiring, R. W., & Hartama, D. (2017). Analysis Resilient Algorithm on Artificial Neural Network Backpropagation. International Conference on Information and Communication Technology (IconICT), Series: Journal of Physics: Conference Series, 930. DOI: http://doi.org/10.1088/1742-6596/930/1/012035 .

Apriyani, Y. (2018). Penerapan Jaringan Syaraf Tiruan Backpropagation Untuk Prediksi Nilai UN Siswa SMPN 2 Cihaurbeuti. IJCIT (Indonesian Journal on Computer and Information Technology, 3(1), 63–70.

Amrin, A. (2018). Perbandingan Metode Neural Network Model Radial Basis Function dan Multilayer Perceptron Untuk Analisa Risiko Kredit Mobil. Jurnal Paradigma, 20(1), 31–38.

Zola, F., Nurcahyo, G. W., & Santony, J. (2018). Jaringan Syaraf Tiruan Menggunakan Algoritma Backpropagation Untuk Memprediksi Prestasi Siswa. Jurnal Teknologi dan Open Source, 1(1), 58–72. DOI: http://dx.doi.org/10.36378/jtos.v1i1.12 .

Yanto, M., Defit, S., & Nurcahyo, G. W. (2015). Analisis Jaringan Syaraf Tiruan Untuk Memprediksi Jumlah Reservasi Kamar Hotel dengan Metode Backpropagation (Studi Kasus Hotel Grand Zuri Padang). Jurnal KomTekInfo, 2(1).

Solikhun., Safii, M., & Trisno, A. (2017). Jaringan Saraf Tiruan Untuk Memprediksi Tingkat Pemahaman Sisiwa Terhadap Mata pelajaran dengan Menggunakan Algoritma Backpropagation. Jurnal Sains Komputer & Informatika (J-SAKTI), 1(1).

Cynthia, E. P., & Ismanto, E. (2017). Jaringan Syaraf Tiruan Algoritma Backpropagation dalam Memprediksi Ketersediaan Komoditi Pangan Provinsi Riau. RABIT (Jurnal Teknologi dan Sistem Informasi Univrab, 2(2). DOI: https://doi.org/10.36341/rabit.v2i2.152 .

Atina, A. (2019). Aplikasi Matlab pada Teknologi Pencitraan Medis. Jurnal Penelitian Fisika dan Terapannya, 1(1). DOI: http://doi.org/10.31851/jupiter.v1i1.3123

Downloads

Published

03-09-2021

How to Cite

[1]
N. . Yeni and Y. Yuhandri, “Tingkat Korelasi Prestasi Akademik Terhadap Siswa SMP Menggunakan Metode Backpropagation”, jsisfotek, vol. 3, no. 3, pp. 108–113, Sep. 2021.

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2 3