Comparison of Priority Areas and Rehabilitation Risk Areas for Post Disaster by K-Means Method
DOI:
https://doi.org/10.37034/jsisfotek.v3i2.46Keywords:
Cluster, K-means, Priority, Rehabilitation, RiskAbstract
Among the inhibiting factors for rehabilitation in Padang City is the absence of an assessment of priority areas and rehabilitation risk areas.This study aims to classify these factors into three clusters and the method used in this study was K-Means method.Disaster average data from 2017 until 2019 as well as data on rehabilitation efforts are used in this method. The results achieved indicate that the rehabilitation efforts carried out have not been evenly distributed in the areas prioritized for rehabilitation.This result can also be an input for the Regional Disaster Management Agency of Padang City in mapping and rehabilitating post-disaster areas and evaluating previous rehabilitation efforts.
References
Mayola, L., Sanjaya, S., & Safitri, W. (2018). Identifikasi Karakteristik Jakarta Islamic Index dengan Menggunakan Algoritma K-Means. Sebatik, 22(2), 83-87. DOI: https://doi.org/10.46984/sebatik.v22i2.312 .
Pratomo, E. D., Irawati, T., & Saptomo, W. L. Y. (2020). Metode K-Means dalam Pemetaan Penyebaran Pamsimas. Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN), 7(2). DOI: http://dx.doi.org/10.30646/tikomsin.v7i2.449 .
Febianto, N. I., & Palasara, N. (2019). Analisa Clustering K-Means Pada Data Informasi Kemiskinan Di Jawa Barat Tahun 2018. Jurnal Sisfokom (Sistem Informasi dan Komputer), 8(2), 130-140. DOI: https://doi.org/10.32736/sisfokom.v8i2.653 .
Vhallah, I., Sumijan, S., & Santony, J. (2018). Pengelompokan Mahasiswa Potensial Drop Out Menggunakan Metode Clustering K-Means. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 2(2), 572-577. DOI: https://doi.org/10.29207/resti.v2i2.308 .
Baihaqi, W. M., Indartono, K., & Banat, S. (2019). Penerapan Teknik Clustering Sebagai Strategi Pemasaran pada Penjualan Buku di Tokopedia dan Shopee. Paradigma-Jurnal Komputer dan Informatika, 21(2), 243-248. DOI: https://doi.org/10.31294/p.v21i2.6149 .
Indriyani, F., & Irfiani, E. (2019). Clustering Data Penjualan pada Toko Perlengkapan Outdoor Menggunakan Metode K-Means. JUITA: Jurnal Informatika, 7(2), 109-113. DOI: http://dx.doi.org/10.30595/juita.v7i2.5529 .
Anjelita, M., Windarto, A. P., & Hartama, D. (2019). Pemanfaatan Datamining pada Pengelompokan Provinsi Terhadap Pencemaran Lingkungan Hidup. KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), 3(1). DOI: http://dx.doi.org/10.30865/komik.v3i1.1675 .
Ali, A. (2019). Klasterisasi Data Rekam Medis Pasien Menggunakan Metode K-Means Clustering di Rumah Sakit Anwar Medika Balong Bendo Sidoarjo. MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, 19(1), 186-195. DOI: https://doi.org/10.30812/matrik.v19i1.529 .
Nepal, B., Yamaha, M., & Sahashi, H. (2019). Energy Conservation in University buildings by Energy Pattern Analysis Using Clustering Technique. International Journal of Energy Production and Management, 4(2), 158-167. DOI: http://doi.org/10.2495/EQ-V4-N2-158-167 .
Aditya, A., Jovian, I., & Sari, B. N. (2020). Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019. Jurnal Media Informatika Budidarma, 4(1), 51-58. DOI: http://doi.org/10.30865/mib.v4i1.1784 .
Astuti, D. (2019). Penentuan Strategi Promosi Usaha Mikro Kecil dan Menengah (UMKM) Menggunakan Metode CRISP-DM dengan Algoritma K-Means Clustering. Journal of Informatics, Information System, Software Engineering and Applications (INISTA), 1(2), 60-72. DOI: https://doi.org/10.20895/inista.v1i2.71 .
Sonang, S., Purba, A. T., & Pardede, F. O. I. (2019). Pengelompokan Jumlah Penduduk Berdasarkan Kategori Usia dengan Metode K-Means. Jurnal Teknik Informasi dan Komputer (Tekinkom), 2(2), 166-172. DOI: http://doi.org/10.37600/tekinkom.v2i2.115 .
Firdaus, R. D., Laksana, T. G., & Ramadhani, R. D. (2019). Pengelompokan Data Persediaan Obat Menggunakan Perbandingan Metode Kmeans Dengan Hierarchical Clustering Single Linkage. Journal of Informatics, Information System, Software Engineering and Applications (INISTA), 2(1). DOI: https://doi.org/10.20895/inista.v2i1.87 .
Yuan, C., & Yang, H. (2019). Research On K-Value Selection Method Of K-Means Clustering Algorithm. J—Multidisciplinary Scientific Journal, 2(2), 226-235. DOI: http://doi.org/10.3390/j2020016