Prediksi Voltage Stability Index (VSI) Metode Artificial Neural Network (ANN) untuk Mendeteksi Tegangan Jatuh

Authors

  • Dimas Fajar Uman Putra Institut Teknologi Sepuluh Nopember, Surabaya
  • Aji Akbar Firdaus Universitas Airlangga
  • Novian Uman Putra Institut Teknologi Adhi Tama Surabaya, Surabaya
  • Ontoseno Penangsang Institut Teknologi Sepuluh Nopember, Surabaya

DOI:

https://doi.org/10.37034/jsisfotek.v4i4.180

Keywords:

Prediction, Voltage Stability Index (VSI), Artificial Neural Network (ANN), Electric Power, Voltage Stability

Abstract

Voltage stability analysis is needed in the planning or operation of electric power systems. This will have an impact on decreasing the system voltage and result in a voltage collapse and will be fatal resulting in a partial or total system blackout. If there is a change in load on a line, it can cause a decrease in the voltage profile. Predicting the value of additional load on a bus based on a voltage stability analysis can be done to detect the occurrence of a voltage drop. There are various methods for analyzing voltage stability, one of which is the point of voltage instability which can be determined using the Fast Voltage Stability Index (FVSI) method. Artificial Neural Network (ANN) is chosen in this problem to predict the value of the additional load.

References

Pratikto, H. (2013). Analisis Stabilitas Tegangan Sistem Tenaga Listrik 500 Kv Jawa Bali dengan Fast Voltage Stability Index (FVSI) (Doctoral dissertation, Universitas Gadjah Mada).

Ruzi, R. S. (2016). Analisis dan Evaluasi Kestabilan Tegangan dengan Metode Continuation Power Flow (CPF) pada Sistem Microgrid (Doctoral dissertation, Institut Teknologi Sepuluh Nopember).

Samuel, I. A., Katende, J., Awosope, C. O., & Awelewa, A. A. (2017). Prediction of voltage collapse in electrical power system networks using a new voltage stability index. International Journal of Applied Engineering Research, 12(2), 190-199.

Deb, S., Tammi, K., Kalita, K., & Mahanta, P. (2018). Impact of electric vehicle charging station load on distribution network. Energies, 11(1), 178. https://doi.org/10.3390/en11010178

Ratra, S., Tiwari, R., & Niazi, K. R. (2018). Voltage Stability Assessment in Power Systems Using Line Voltage Stability Index. Computers and Electrical Engineering, 70, 199-211. https//doi.org/10.1016/j.compeleceng.2017.12.046

Ozcanli, A.K., Yaprakdal, F., & Baysal, M. (2020). Deep Learing Methods and Applications for Electrical Power Systems : A Comprehensive review. In International Journal of Energy Research (Vol.44, Issue 9, pp. 7136-7157) John Wiley and Sons Ltd. hhtps://doi.org/10.1002/er.5331

Rao, N.A.R.,Vijaya,P.,&Kowsalya,M. (2021). Voltage Stability indices for stability assessment:a review. Internasional Journal of Ambient Energy Volume 42 Issue 7. https://doi.org/10.1080/01430750.2018.1525585

Musirin, I., & Rahman, T.K.A (2002) Novel Fast Voltage Stability Index (FVSI) for Voltage Stability Analysis in Power Transmission System. 2002 Student Conference on Research and Development: Globalizing Reseacrh and Development in Electrical and Electronics Engineering, SCOReD 2002-Proceedings,265-268. https://doi.org/10.1109/SCORED.2002.103318

Sharma, A.K., Saxena, A., Soni, B.P., & Gupta, V. (2018). Voltage Stability Assessment Using Artificial Neural Network. 2018 IEEMA Engineer Infinite Conference, EtechNxT 2018, 1-5. https://doi.org/10.1109/ETECHNXT.2018.8385361

Modarresi, Jawab., Eskandar,G.,Amin,k. (2016). A comprehensive Review of the Voltage Stability Indices. Elsevier Vol.63 Hal.1-12. https://doi.org/10.1016/j.rser.2016.05.010

Onlam, A.,dkk. (2019). Power Loss Minimization and Voltage Stability Improvement in Electrical Distribution System via Network Reconfiguration and Distributed Generation Placement Using Novel Adaptive Shuffled Frogs Leaping Algorithm. Energies 12(3), hal.553. https://doi.org/10.3390/en12030553

Anugrah,A. Van, & Eteruddin,H. (2020). Studi Pemasangan Express Feeder Jaringan Distribusi 20kV Untuk Mengatasi Drop Tegangan Pada Feeder Sorek PT PLN (Persero) Rayon Pangkalan Kerinci. Jurnal Sain, Teknologi & Industri, 4(2), 65-71. https://doi.org/10.31849/sainetin.v412.6338

Mokres, S., Wang, Y., & Tiancong,. (2022). Modern Voltage stability index for prediction of voltage collapse and estimation of maximum load-ability for weak buses and critical lines identification. International Journal of Electrical Power & Energy Systems, 145. https://doi.org/10.1016/j.ijpes.2022.108596

Danish,M.S.S.,dkk. (2019). A Recap of Voltage Stability Indices in the Past Three Decades. Energies, 12(8), 1544. https://doi.org/10.3390/en12081544

Guddanti, K.P., Matavalam, A., & Weng, Y. (2022). Local Measurement Based Robust Voltage Stability Index & Identification of Voltage Collapse Onset. EESS . https://doi.org/10.48550/arXiv.2203.12857

Muhammd, F., Rezha, A., & Anggoro, S. P. (2021). Pemulihan Voltage Sag Menggunakan Dynamic Voltage Restorer Pada Sistem Artifical Neural Network. Jurnal Ilmiah Setrum Vol. 10 No.2 Hal. 60-77. https://doi:org/10.36055/setrum.v10i2.13094

Rawat, M.S., & Vadhera, S. (2020). Probabilistic Approach to Determine Penetration of Hybrid Renewable DGs in Distribution Network Based on Voltage Stability Index. Arabian Journal For Science and Engineering 45:1473-1498. https://doi.org/10/1007/s13369-019-04023-1

Saadat, H. (1999). Power System Analysis. McGraw-Hill.

Saadat, M.N.,& Shuaib,M. (2020) Advancements in Deep Learning Theory and Applications : Perspective in 2020 and beyond. https://doi.org/10.5772/intechopen.92271

Salama, H.S., & Vokony, I. (2022) Voltage Stability Indices-A Comparison and a Review. Elsevier, Vol.98. https://doi.org/10.1016/j.compeleceng.2022.107743

Pansini, A.J. (2005) Power Trnasmission & Distribution, Second Edition. River Publishers, 400. https://doi.org/10.1201/9781003151203

Downloads

Published

29-11-2022

How to Cite

[1]
D. F. U. . Putra, A. A. Firdaus, N. U. . Putra, and O. . Penangsang, “Prediksi Voltage Stability Index (VSI) Metode Artificial Neural Network (ANN) untuk Mendeteksi Tegangan Jatuh”, jsisfotek, vol. 4, no. 4, pp. 192–197, Nov. 2022.

Issue

Section

Articles