Data Mining Performance Assessment of Regional Development Planning Agency Employees Using Bayesian Classifier Algorithm
DOI:
https://doi.org/10.37034/jsisfotek.v5i2.175Keywords:
Data Mining, Classification, Employee Performance, Bayesian Classifier Algorithm, , Reward and PunishmentAbstract
Performance is the success or work achievement of a person or group in an organization in completing work. Performance is the goals and targets given, performance appraisal is carried out. The results of employee performance consist of two, namely good or bad. These results are used as indicators in making decisions for giving rewards or punishments. This study aims to measure the level of employee performance with targets very good, good, quite good, less good and bad. The data used in this study is employee data. The assessment criteria are the results of the best employee assessment at the Regional Development Planning Agency in June 2022. The method used in determining employee performance is the Bayesian Classifier Algorithm. This algorithm uses the concept of classification. The data that is processed is first classified and followed by the analysis process in producing employee performance. This study uses training data as many as 43 records then the assessment is used as testing data. The results of the analysis of employee performance appraisal using the Bayesian Classifier Algorithm that the algorithm succeeded in classifying employee performance in accordance with the objectives of this study very well.
References
Fauzi, T. H., Harits, B., R Deni Muhammad Danial, D. M. D., & Kokom Komariah, K. K. (2022). Adaptive strategies of external environmental effects in digital entrepreneurship in the strategic management perspective. Academic Journal of Interdisciplinary Studies www. richtmann. org, 9(3), 38-45.DOI: https://doi.org/10.36941/ajis-2020-0040
Yendra, R., Marifni, L., & Suryani, I. (2020). Klasifikasi Data Mining Untuk Seleksi Penerimaan Calon Pegawai Negeri Sipil Tahun 2017 Menggunakan Metode Naïve Bayes. Jurnal Sains Matematika dan Statistika, 6(1), 65-78. DOI: https://doi.org/10.24014/jsms.v6i1.9254
Sitompul, A. M., Suhada, S., & Saifulah, S. (2021). Teknik Data Mining Dalam Prediksi Jumlah Siswa Baru Dengan Algoritma Naive Bayes. Kesatria: Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen), 2(2), 108-117. DOI: https://doi.org/10.30645/kesatria.v2i2.65
Simanjuntak, A. Y., & Anita, A. (2022). IMPLEMENTASI DATA MINING MENGGUNAKAN METODE NAÃ VE BAYES CLASSIFIER UNTUK DATA KENAIKAN PANGKAT DINAS KETENAGAKERJAAN KOTA MEDAN. JOURNAL OF SCIENCE AND SOCIAL RESEARCH, 5(1), 85-91. DOI: https://doi.org/10.54314/jssr.v5i1.804
Doni, B. T. R., Susanti, S., & Mubarok, A. (2021). Penerapan Data Mining Untuk Klasifikasi Penyakit Hepatocellular Carcinoma Menggunakan Algoritma Naïve Bayes. Jurnal Responsif: Riset Sains dan Informatika, 3(1), 12-19. DOI: https://doi.org/10.51977/jti.v3i1.403
Ramadani, S., sekar Ayu, N. Z., Nurhayati, N., Azzahra, F., & Windarto, A. P. (2020). Analisis Data Mining Naive Bayes Klasifikasi Pada Kelayakan Penerima PKH. KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), 4(1). DOI: https://doi.org/10.30865/komik.v4i1.2726
Wijaya, H. D., & Dwiasnati, S. (2020). Implementasi Data Mining dengan Algoritma Naïve Bayes pada Penjualan Obat. Jurnal Informatika, 7(1), 1-7. DOI: https://doi.org/10.31294/ji.v7i1.6203
Ristianto, F., Nurmalasari, N., & Yoraeni, A. (2021). Impementasi Metode Naive Bayes Untuk Prediksi Harga Emas. Computer Science (CO-SCIENCE), 1(1), 62-71. DOI: https://doi.org/10.31294/coscience.v1i1.201
Indonesia, P. R. (2019). Peraturan Pemerintah Republik Indonesia Nomor 30 Tahun 2019 Tentang Penilaian Kinerja Pegawai Negeri Sipil. Kementerian Sekretariat Negara Republik Indonesia Indonesia.
Indonesia, R. (2014). Peraturan Presiden No. 29 Tahun 2014 Tentang Sistem Akuntabilitas Kinerja Instansi Pemerintah. Lembaran Negara RI Tahun, (80).
Simanjuntak, A. Y., & Anita, A. (2022). IMPLEMENTASI DATA MINING MENGGUNAKAN METODE NAÃ VE BAYES CLASSIFIER UNTUK DATA KENAIKAN PANGKAT DINAS KETENAGAKERJAAN KOTA MEDAN. JOURNAL OF SCIENCE AND SOCIAL RESEARCH, 5(1), 85-91. DOI: https://doi.org/10.54314/jssr.v5i1.804
Yendra, R., Marifni, L., & Suryani, I. (2020). Klasifikasi Data Mining Untuk Seleksi Penerimaan Calon Pegawai Negeri Sipil Tahun 2017 Menggunakan Metode Naïve Bayes. Jurnal Sains Matematika dan Statistika, 6(1), 65-78. DOI: https://doi.org/10.24014/jsms.v6i1.9254
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jurnal Sistim Informasi dan Teknologi

This work is licensed under a Creative Commons Attribution 4.0 International License.