Algoritma Backpropagation dalam Akurasi Memprediksi Kemunculan Titik Api (Hotspot) pada Wilayah Kerja Dinas Kehutanan
DOI:
https://doi.org/10.37034/jsisfotek.v5i2.167Keywords:
Prediction, Hotspot, Forest Fire, Backpropagation, Artificial Neural NetworkAbstract
Forest and land fires are an annual disaster issue in Indonesia. The forest area in West Sumatra is ± 2,286,883.10 Ha and 27% or an more than 630,695 Ha of forest area categorized as critical land that has the potential to burn and be damaged. Controlling for forest and land fires in West Sumatra Province was task for Forestry Departement, part of Sumatera Barat Government. One of is task was to reduce the rate of forest destruction. Forest and land fires are an annual disaster issue in Indonesia. The forest area in West Sumatra is ± 2,286,883.10 Ha and 27% or an more than 630,695 Ha of forest area categorized as critical land that has the potential to burn and be damaged. Controlling for forest and land fires in West Sumatra Province was task for Forestry Departement, part of Sumatera Barat Government. One of is task was to reduce the rate of forest destruction. Apart from to extinguishing forest fires directly at the hotspots, preventive action are needed to reduce the possibility of forest and land fires, and one of it is by predicting the possibility hotspots in the future. One of the methods used to predict the possibility hotspots is the use of artificial neural network Backpropagation, this is because Backpropagation has the ability to learn from existing data patterns to calculate the possibility of future events. Data of hotspots that have happened previously and several supporting variables such as air temperature, humidity, rainfall and wind speed, were analyzed and grouped as the basis for the formation of an artificial neural network and for further data training. This learning is done by testing several different network architectures. The results obtained from these tests are the Performance and MSE (Mean Squared Error) values for each network architecture. The test results for each architecture will be compared to determine the best architecture that produces the most accurate predictive value and the smallest MSE. The results of this prediction will later be used as one of the considerations for the Forestry Departement for planning forest and land fire control activities in their area.
References
Dishut [Dinas Kehutanan]. (2021). Buku Laporan Kinerja Tahun 2021 Dinas Kehutanan Provinsi Sumatera Barat
Novianty, D., dias Palasara, N., & Qomaruddin, M. (2021). Algoritma Regresi Linear pada Prediksi Permohonan Paten yang Terdaftar di Indonesia. JUSTIN (Jurnal Sistem dan Teknologi Informasi), 9(2), 81-85. DOI: http://dx.doi.org/10.26418/justin.v9i2.43664
Wulansari, I. (2021). Literature Review Galat Dalam Pemodelan Dan Peramalan. Citizen: Jurnal Ilmiah Multidisiplin Indonesia, 1(3), 159-163. DOI: https://doi.org/10.53866/jimi.v1i3.23
Yunita, S., Mahesti, N. A., Sihaloho, R. M. B., & Setyadi, R. (2022). Forecasting Pada Rantai Pasok Pabrik Penggilingan Daging Menggunakan Metode Time Series. JURIKOM (Jurnal Riset Komputer), 9(3), 761-769. DOI: http://dx.doi.org/10.30865/jurikom.v9i3.4221
Novianto, R. P., Wibawa, I. P., & Romdlony, M. Z. (2020). Analisis Pendeteksi Gelombang Tsunami Dengan Menggunakan Jaringan Syaraf Tiruan. eProceedings of Engineering, 7(1). DOI: https://doi.org/10.32736/sisfokom.v9i3.945
Raharjo, M., Napiah, M., Putra, J. L., & Mustofa, M. (2020). Prediksi Pengaruh Matakuliah Terhadap Peminatan Outline Tugas Akhir Mahasiswa Dengan Jaringan Syaraf Tiruan. Jurnal Infortech, 2(1), 78-83. DOI: https://doi.org/10.31294/infortech.v2i1.7965
Siregar, E. T. (2021). Jaringan Syaraf Tiruan Backpropagation dalam Diagnosiss Kakao. Csrid (Computer Science Research and Its Development Journal), 13(3a), 243-252. DOI: http://dx.doi.org/10.22303/csrid.13.3a.2021.243-252
Achmalia, A. F., Walid, W., & Sugiman, S. (2020). Peramalan penjualan semen menggunakan backpropagation neural network dan recurrent neural network. UNNES Journal of Mathematics, 9(1), 6-21. DOI : https://doi.org/10.15294/ujm.v9i1.29970
Satria, W. (2020). Jaringan Syaraf Tiruan Backpropagation Untuk Peramalan Penjualan Produk (Studi Kasus Di Metro Electronic Dan Furniture). Djtechno: Jurnal Teknologi Informasi, 1(1), 14-19. DOI: https://doi.org/10.46576/djtechno.v1i1.966
Walida, N., Wahyuningsih, S., & Amijaya, F. D. T. (2021). Pemilihan Parameter Optimum Menggunakan Exponential Smoothing Dengan Metode Golden Section Untuk Peramalan Jumlah Titik Panas Di Kalimantan Timur. Jambura Journal of Probability and Statistics, 2(2), 75-85. DOI: https://doi.org/10.34312/jjps.v2i2.10416
Yuniar, V., Meiliyana, M., & Apandi, A. (2022). Strategi Badan Penanggulangan Bencana Daerah Dalam Pengendalian Kebakaran Hutan Dan Lahan Di Kabupaten Penukal Abab Lematang Ilir Sumatera Selatan. Jurnal Administrativa, 4(1), 91-100. DOI: https://doi.org/10.23960/administrativa.v4i1.118
Putra, I. D. G. A., Heryanto, E., Sopaheluwakan, A., Pradana, R. P., & Haryoko, U. (2019). Sebaran Spasial dan Temporal Titik Panas (Hotspot) di Indonesia dari Satelit Modis dengan Metode Gridding. In Seminar Nasional Geomatika (Vol. 3, pp. 1123-1128). DOI : https://doi.org/10.24895/SNG.2018.3-0.1035
Lusiana, A., & Yuliarty, P. (2020). Penerapan Metode Peramalan (Forecasting) pada Permintaan Atap di PT X. Industri Inovatif: Jurnal Teknik Industri, 10(1), 11-20. DOI: https://doi.org/10.36040/industri.v10i1.2530
Fardhani, A. A., Simanjuntak, D. I. N., & Wanto, A. (2018). Prediksi harga eceran beras di pasar tradisional di 33 kota di Indonesia menggunakan algoritma backpropagation. Jurnal Infomedia: Teknik Informatika, Multimedia & Jaringan, 3(1), 25-30. DOI: http://dx.doi.org/10.30811/jim.v3i1.625
Sanjaya, H., Okprana, H., & Damanik, B. E. (2022). Implementasi Jaringan Saraf Tiruan Dalam Prediksi Penjualan Kue pada UD. Mak Kembar Pematang Siantar Dengan Backpropagation. Resolusi: Rekayasa Teknik Informatika dan Informasi, 2(5), 225-233. DOI: https://doi.org/10.30865/resolusi.v2i5
Yanto, M., Mandala, E. P. W., Putri, D. E., & Yuhandri, Y. (2018). Peramalan Penjualan Pada Toko Retail Menggunakan Algoritma Backpropagation Neural Network. Jurnal Media Informatika Budidarma, 2(3). DOI: http://dx.doi.org/10.30865/mib.v2i3.811
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jurnal Sistim Informasi dan Teknologi

This work is licensed under a Creative Commons Attribution 4.0 International License.