Klasterisasi Pasien Rawat Inap Peserta BPJS Berdasarkan Jenis Penyakit Menggunakan Algoritma K-Means

Authors

  • Yandiko Saputra Sy Independent Researcher

DOI:

https://doi.org/10.37034/jsisfotek.v5i2.162

Keywords:

Medical Record, BPJS, Data Mining, K-Means, Cluster

Abstract

Medical records of patients from the Health Insurance Administering Body (BPJS) consist of complete patient data along with a complex history of patient services stored in every health facility. Inpatient medical record data contains important data as well as contains useful information as new knowledge using data mining techniques. This study aims to assist and provide new information related to the clustering of BPJS inpatients at the Arifin Achmad Hospital, Riau Province, so as to obtain information related to the spread of the patient's disease. The data used are medical records of inpatients in 2021. The data obtained are then processed using the K-Means clustering algorithm with a total of 3 clusters. The study resulted in cluster K1 dominated by Malignant neoplasm, breast, unspecified (C50.9) and Non-Hodgkin's lymphoma, unspecified type (C85.9) disease. Cluster K2 is dominated by fracture of neck of femur, closed (S71.00) and Dengue haemorrhagic fever (A91).

References

Jaya, S. T., Wulandari, R. F., & Susiloningtyas, L. (2021). Pendidikan kesehatan PHBS kader kesehatan era new normal di Desa Darungan. Journal of Community Engagement in Health, 4(1), 162-166. https://doi.org/10.30994/jceh.v4i1.131

Undang-udang nomor 24 tahun 2011 tentang badan penyelenggara jaminan sosial

Azzahra, Siti Aisyah Nada, and M. Faiz Mufidi. "Tanggung Jawab Petugas Kesehatan Terhadap Kerahasiaan Dokumen Pasien Dalam Melakukan Pelayanan Medis Ditinjau Dari UU No. 44 Thn 2009. Dihubungkan Dengan Permenkes No. 269/Menkes/Per/III/2008 Tentang Rekam Medis." Prosiding Ilmu Hukum 7.1 (2021): 173-177. http://dx.doi.org/10.29313/.v7i1.24974

Abduh, R. (2021). Kajian Hukum Rekam Medis Sebagai Alat Bukti Malapraktik Medis. De Lega Lata: Jurnal Ilmu Hukum, 6(1), 221-234. http://dx.doi.org/10.30596%2Fdll.v6i1.4661

Amir Ali, Lili Masyfufah.(2021).Klasterisasi Pasien BPJS dengan Metode K-Means Clustering Guna Menunjang Program Jaminan Kesehatan Nasional Di Rumah Sakit Anwar Medika Balong Bendo Sidorajo, 8(1), https://doi.org/10.30812/matrik.v19i1.529

Soleman, Carolina Devi Oktaviana., Pramaita, Nyoman., & Sudarma, Made. 2020. Classification Of Loyality Customer Using K-Means Clustering, Study Case : PT. Sucofindo (Persero) Denpasar Branch. International Journal of Engineering and Emerging Technology (IJEET). 5(2). https://doi.org/10.24843/IJEET.2020.v05.i02.p28

Nainggolan, Rena., & Purba, Eviyanty. 2020. “Cluster Analisys of Online Shop Product Review Using K-Means Clustering”. International Journal of Entrepreneurship and Business Development, 3(2).https://doi.org/10.29138/ijebd.v3i02.977

Indraputra, R.A., & Fitriana, R. 2020. “K-Means Clustering Data COVID-19”. Jurnal Teknik Industri,10(3). https://doi.org/10.25105/jti.v10i3.8428

Sugiharto, ato., Sari, Betha Nurina., & Padilah, Tes Nur. 2021. Analisis Cluster Sebaran Covid-19 Menggunakan Algoritma K-Means Clustering. Journal of Information Technology and Computer Science (INTECOMS). 4(2). https://doi.org/10.31539/intecoms.v4i2.2776

Rismayadi, Ali Akbar., Fatonah, Novia Nur., & Junianto, Erfian. 2021. Algoritma K-Means Clustering Untuk Menentukan Strategi Pemasaran CV. Integreet Konstruksi. Jurnal Responsif. 3(1). https://doi.org/10.51977/jti.v3i1.393

Karolina, Novi. 2021. Data Mining Pengelompokkan Pasien Rawat Inap Peserta BPJS Menggunakan Metode Clustering (Studi Kasus : RSU.Bangkatan). https://doi.org/10.32938/jitu.v1i2.1470

Haviluddin, Patandianan, Suryani, Junita., Putra, Gubtha Mahendra., Puspitasari, Novianti., & Pakpahan, Herman Santoso. 2021. Implementasi Metode K-Means untuk Pengelompokkan Rekomendasi Tugas Akhir. Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer. 16(1).http://dx.doi.org/10.30872/jim.v16i1.5182

Makbul, M. (2021). Metode pengumpulan data dan instrumen penelitian.https://doi.org/10.31219/osf.io/svu73

AR, H. K., & Pohan, N. (2022). Implementasi Algoritma FP-Growth untuk Mengukur Tingkat Kemampuan Siswa dalam Prestasi Belajar. SATIN-Sains dan Teknologi Informasi, 8(1), 138-146.https://doi.org/10.33372/stn.v8i1.843

Panggabean, D. S. O., Buulolo, E., & Silalahi, N. (2020). Penerapan Data Mining Untuk Memprediksi Pemesanan Bibit Pohon Dengan Regresi Linear Berganda. JURIKOM (Jurnal Riset Komputer), 7(1), 56-62.http://dx.doi.org/10.30865/jurikom.v7i1.1947

Aditya, A., Jovian, I., & Sari, B. N. (2020). Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019. Jurnal Media Informatika Budidarma, 4(1),51-58. http://dx.doi.org/10.30865/mib.v4i1.1784

Downloads

Published

03-09-2022

How to Cite

[1]
Y. Saputra Sy, “Klasterisasi Pasien Rawat Inap Peserta BPJS Berdasarkan Jenis Penyakit Menggunakan Algoritma K-Means”, jsisfotek, vol. 5, no. 2, pp. 33–37, Sep. 2022.

Issue

Section

Articles