Metode Bayesian dan Multilayer Percepton dalam Mengklasifikasi Diabetes Mellitus

Authors

  • Rasna Universitas Yapis Papua
  • Moh. Rahmat Irjii Matdoan Universitas Sains dan Teknologi Jayapura

DOI:

https://doi.org/10.37034/jsisfotek.v4i2.132

Keywords:

Classification, Diabetes, Bayesian, Multilayer, Percepton

Abstract

Diabetes mellitus is a chronic metabolic disorder that causes glucose regulation in the blood. Blood sugar anomalies can be defined as unwanted readings either due to normal causes or reasons unknown to the patient. Machine learning applications have been widely introduced in diabetes research and blood sugar anomaly detection. However, modeling options and strategies for classification in diabetes mellitus are needed. This study aims to classify the data as diabetic or non-diabetic and improve classification accuracy. Classification accuracy is improved by using many of the data sets as training data and test data. Classification accuracy is improved by using multiple of the data set as data. In the test, the C4.5 and RF hybrid methods, as well as the MLP and Net Bayes hybrid classification methods were developed for the classification of diabetes. In the case of C4.5 + RF it provides an accuracy of 79.31% which is higher than the individual models. Similarly, MLP + Net Bayes, provides an 81.89% higher accuracy than the individual models. In the second case the 85-15% ensemble model training and test partitions have an important role for the classification of diabetes data. The proposed MLP + Net Bayes provides 81.89% accuracy as a robust model for data classification. So that the proposed model achieves the highest accuracy of 81.89% with 6 features and reaches the highest sensitivity of 64.10% and the highest specificity of 90.90%.

References

Akyol, K., & Şen, B. (2018). Diabetes Mellitus Data Classification by Cascading of Feature Selection Methods and Ensemble Learning Algorithms. International Journal of Modern Education and Computer Science, 10(6), 10–16. doi:10.5815/ijmecs.2018.06.02

Sarki, R., Ahmed, K., Wang, H., Zhang, Y., & Wang, K. (2018). Convolutional Neural Network for Multi-class Classification of Diabetic Eye Disease. ICST Transactions on Scalable Information Systems, 172436. doi:10.4108/eai.16-12-2021.172436

Puchulu, F. (2018). Definition, Classification and Diagnosis of Diabetes Mellitus. Cutaneous Manifestations of Diabetes, 1–1. doi:10.5005/jp/books/13050_2

Alam, U., Asghar, O., Azmi, S., & Malik, R. A. (2014). General aspects of diabetes mellitus. Handbook of clinical neurology, 126, 211-222. DOI: https://doi.org/10.1016/B978-0-444-53480-4.00015-1

Schmidt, M. I., Matos, M. C., Reichelt, A. J., Forti, A. C., De Lima, L., Duncan, B. B., & Group, F. T. B. G. D. S. (2000). Prevalence of gestational diabetes mellitus–do the new WHO criteria make a difference?. Diabetic Medicine, 17(5), 376-380. DOI: https://doi.org/10.1046/j.1464-5491.2000.00257.x

Kanaya, A. M., Grady, D., & Barrett-Connor, E. (2002). Explaining the sex difference in coronary heart disease mortality among patients with type 2 diabetes mellitus: a meta-analysis. Archives of internal medicine, 162(15), 1737-1745. DOI: 10.1001/archinte.162.15.1737

Tri Hastuti, R. (2008). Faktor-faktor Risiko Ulkus Diabetika Pada Penderita Diabetes Mellitus (Studi Kasus di RSUD Dr. Moewardi Surakarta) (Doctoral dissertation, Program Pasca Sarjana Universitas Diponegoro).

Song, S., Zhang, Y., Qiao, X., Duo, Y., Xu, J., Peng, Z., ... & Wang, A. (2022). HOMA‐IR as a risk factor of gestational diabetes mellitus and a novel simple surrogate index in early pregnancy. International Journal of Gynecology & Obstetrics, 157(3), 694-701. DOI: https://doi.org/10.1002/ijgo.13905

Entezari, M., Hashemi, D., Taheriazam, A., Zabolian, A., Mohammadi, S., Fakhri, F., ... & Samarghandian, S. (2022). AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomedicine & Pharmacotherapy, 146, 112563. https://doi.org/10.1016/j.biopha.2021.112563

Anil, K. S., & Jain, R. (2022, April). Data Mining Techniques in Diabetes Prediction and Diagnosis: A Review. In 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 1696-1701). IEEE. DOI: 10.1109/ICOEI53556.2022.9776754

Paisanwarakiat, R., Na-udom, A., & Rungrattanaubol, J. (2022). Combining Logistic Regression Analysis with Data Mining Techniques to Predict Diabetes. In International Conference on Computing and Information Technology (pp. 88-98). Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-99948-3_9

Lagman, A. C., Alfonso, L. P., Goh, M. L. I., Lalata, J. P., Magcuyao, J. P. H., & Vicente, H. N. (2020). Classification Algorithm Accuracy Improvement for Student Graduation Prediction Using Ensemble Model. International Journal of Information and Education Technology, 10(10), 723–727. doi:10.18178/ijiet.2020.10.10.1449

Ramchoun, H., Amine, M., Idrissi, J., Ghanou, Y., & Ettaouil, M. (2016). Multilayer Perceptron: Architecture Optimization and Training. International Journal of Interactive Multimedia and Artificial Intelligence, 4(1), 26. doi:10.9781/ijimai.2016.415

Jackman, S. (2004). Bayesian Analysis for Political Research. Annual Review of Political Science, 7(1), 483–505. doi:10.1146/annurev.polisci.7.012003.104706

Trust-Region Methods and Conic Model Methods. (n.d.). Springer Optimization and Its Applications, 303–351. doi:10.1007/0-387-24976-1_6

Lagman, A. C., Alfonso, L. P., Goh, M. L. I., Lalata, J. P. & Magcuyao, J. P. H. (2020). Classification Algorithm Accuracy Improvement for Student Graduation Prediction Using Ensemble Model, International Journal of Information and Education Technology, 10(10), 723–727. doi: 10.18178/ijiet.2020.10.10.1449

Tharwat, A. (2020). Classification assessment methods. Applied Computing and Informatics. https://doi.org/10.1016/j.aci.2018.08.003

Russell, I., & Markov, Z. (2017, March). An introduction to the Weka data mining system. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education (pp. 742-742). DOI: https://doi.org/10.1145/3017680.3017821

Downloads

Published

16-06-2022

How to Cite

[1]
Rasna and M. R. I. . Matdoan, “Metode Bayesian dan Multilayer Percepton dalam Mengklasifikasi Diabetes Mellitus ”, jsisfotek, vol. 4, no. 2, pp. 82–86, Jun. 2022.

Issue

Section

Articles